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The radiation patterns of acoustic sources have great significance in a wide range of applications,

such as measuring the directivity of loudspeakers and investigating the radiation of musical instru-

ments for auralization. Recently, surrounding spherical microphone arrays have been studied for

sound field analysis, facilitating measurement of the pressure around a sphere and the computation

of the spherical harmonics spectrum of the sound source. However, the sound radiation pattern may

be affected by the location of the source inside the microphone array, which is an undesirable prop-

erty when aiming to characterize source radiation in a unique manner. This paper presents a theoret-

ical analysis of the spherical harmonics spectrum of spatially translated sources and defines four

measures for the misalignment of the acoustic center of a radiating source. Optimization is used to

promote optimal alignment based on the proposed measures and the errors caused by numerical and

array-order limitations are investigated. This methodology is examined using both simulated and

experimental data in order to investigate the performance and limitations of the different alignment

methods. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3624825]

PACS number(s): 43.60.Fg, 43.38.Md [AJZ] Pages: 2003–2015

I. INTRODUCTION

The radiation pattern is an important characteristic of a

sound source, representing the sound directivity and spatial

propagation of the acoustic waves. The study of the radiation

pattern is important for auralization, when one is interested

in reproducing sound fields of musical instruments using an

array of loudspeakers,1 and therefore an accurate measure-

ment of the instrument performance is of importance.

Another application of the study of radiation patterns of

acoustic sources is for the purpose of noise reduction of a

noisy machine using active control of sound,2 where the in-

formation about the machine sound directivity is used for

reducing the noise emission. Furthermore, analyzing and

modeling the acoustic radiation pattern of a human speaker

is useful for measurement techniques of microphones used

in telephones3 and enables the simulation of the mouth as a

complex sound source rather than a simple omnidirectional

source.4 This is important in applications dealing with the

measurement of intelligibility parameters that are affected

by the directivity of the source, such as the speech transmis-

sion index in cars.

Directivity measurements of musical instruments and

human voice have been performed using various methods of

microphone placement around the sources. For example, (1)

measuring the directivity of a singer using a linear array of

microphones,5 (2) measuring the directivity of musical

instruments recording using two circular arrays of micro-

phones, one vertical and one horizontal,6 and (3) measuring

the sound directivity of a violin using a horizontal circular

array and shifting the array in the vertical plane to achieve

sampling on a cylindrical surface.7 Directivity measurements

using a spherical array of microphones have been performed

using 12 microphones and then reproduced using electronic

string instruments.8 Similar measurements were carried out

using an array of 32 microphones in a full anechoic chamber

in order to investigate the sound directivity of a large num-

ber of instruments.9 Another work10 described a setup of 64

spherically arranged microphones. The spherical arrays, as

opposed to arrays used in previous studies, provided com-

plete directional information on the radiated sound field that

was only limited by the total number of microphones used to

capture the sound field.

Sound field analysis of acoustic sources using spherical

microphone arrays has been performed previously in several

ways. One option is by using a full sphere of fixed-position

microphones.11 Other options include the placement of a

hemisphere of microphones surrounding the source from the

upper side,12 or the rotation of a single microphone using a

scanning system.13 After sampling the sound pressure, the

sound directivity can be represented by spherical harmonics,

which is an efficient tool for the analysis and reproduction of

sound.14 The maximal order of the spherical harmonics
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representation is determined by the number of microphones

employed and therefore the desired spatial resolution can be

controlled.11

Although previous studies of sound field measurement

and analysis presented useful methods for characterizing

the directivities of sound sources, most of these studies did

not consider variations in the directional pattern due to var-

iations in source positioning. Reference 9 suggested that a

displacement in the source position may affect the meas-

ured radiation pattern. Variations in source position may

occur due to both source rotation and source translation. In

the case of measurement and analysis using spherical

arrays, rotational changes of a sound field can be easily

handled due to the spherical symmetry of these arrays; this

is because the amplitudes of the spherical harmonics coeffi-

cients are modified only within a given order n, and can be

rotated back by a simple multiplication with the rotation

Wigner-D matrix in the spherical harmonics domain.15

Therefore, when one is interested in investigating the direc-

tional pattern of a sound source, a certain flexibility in the

source angular position is afforded. However, radiation di-

rectivity is highly sensitive to coordinate translation. For

example, consider a point source located at the origin and

radiating a perfect spherical wave that is represented by a

single spherical harmonic of order zero. Higher orders will

soon appear when the point source is shifted away from the

origin.16

It is therefore important to overcome variations in the

representation of sound radiation due to translation. The

acoustic center of a sound source, which is determined by

the center of the spherical waves, measured at some distance

away from the source17,18 can be used for this.

Most of the literature regarding the acoustic center is

focused on sources with known sound radiation functions17–19

so that the acoustic center is determined in these cases using

analytically closed forms. The acoustic center of micro-

phones, speakers, and human ears has been studied using

models.18 An important property of the acoustic center is that

it does not necessarily coincide with the source location.20

This was demonstrated using measurements and a computer

model of a horn by examining changes in the nulls angles as a

function of frequency.

Recently, acoustic alignment algorithms have been

applied to measured directivity data of musical instru-

ments.21 Another method has been suggested to determine

the acoustic center and to compensate for movement

of measured sources and presented an algorithm for the

alignment of sources measured by spherical microphone

arrays using spherical harmonics.22 This method facilitates

compensation for changes in the radiation pattern due to dis-

placement as well as providing a more efficient representa-

tion for spatial encoding purposes.

This paper expands on the published work of Rafaely22

and presents a comprehensive error analysis that determines

the limitations of this method as well as an examination of

the algorithm using simulation studies and an experimental

investigation using recorded data. The effect of source trans-

lation on the radiation pattern and on its spherical harmonics

representation is investigated. The translation operator is

developed both analytically and numerically, and an analysis

of the error generated by sampling and translation is pre-

sented. Several measures for locating the acoustic center of a

source captured with a surrounding microphone array are

proposed.

The aforementioned method is investigated for sour-

ces of low directivity such as monopoles and musical

instruments playing at low frequencies and succeeds in

aligning such sources for the purposes of compensation

for spatial deviation and of efficient spherical harmonics

representation for spatial encoding. However, for sources

of high directivity, as well as sources radiating at high fre-

quencies, the results of this method are generally not as

good in terms of repeatability and convergence to the

physical center, which limits the frequency and directivity

range that the algorithm can handle with satisfactory

results.

This paper offers the following contributions:

(1) Development of a method for the centering of measured

acoustic sources.

(2) Presentation of a comprehensive error analysis for sam-

pling and translation of sources represented with spheri-

cal harmonics expansions.

(3) Presentation of simulation results illustrating the per-

formance and limitations of the method.

(4) Demonstration of an experimental study of the method

using recorded data.

II. SOUND FIELD REPRESENTATION BY SPHERICAL
HARMONICS

Source alignment, as applied in this paper, is based on

spherical harmonics decomposition. Therefore, a descrip-

tion of the spherical harmonics and the exterior problem in

spherical coordinates is now introduced, based on the work

of Williams.16 A sound pressure in space is denoted by

p(k, r, h, u), where k is the wave number and (r, h, u) are

the standard spherical coordinates.23 Consider such a pres-

sure field which is square integrable on the unit sphere,

radiating from a source bounded by a sphere of radius a.
Then the radiated pressure field is given by

pðk; r; h;/Þ ¼
X1
n¼0

Xn

m¼�n

cnmðkÞhnðkrÞYm
n ðh;/Þ; (1)

where hn(kr) are the spherical Hankel functions of the first

kind, cnm are the coefficients that support the equation, and

the spherical harmonics Ym
n ð�; �Þ are defined by

Ym
n ðh;/Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

4p
ðn� mÞ!
ðnþ mÞ!

s
Pm

n ðcos hÞeim/; (2)

where n is the order of the spherical harmonics, Pm
n ð�Þ is the

associated Legendre function, and i ¼
ffiffiffiffiffiffiffi
�1
p

. The coeffi-

cients cnm can be computed using the orthogonality of the

spherical harmonics around the unit sphere. Multiplying

Eq. (1) with the complex conjugate of the spherical harmon-

ics on both sides and integrating the result around the unit

sphere gives
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cnmðkÞ ¼
1

hnðkrÞ

ð
S2

pðk; r; h;/ÞYm
n ðh;/Þ

�dX; (3)

with dX ¼ sin h dh d/ and the asterisk denoting the

complex conjugate. Having found cnm(k), the pressure func-

tion can be computed using Eq. (1) at every point satisfying

r> a.
The above-presented derivation suggests that knowl-

edge of the sound pressure on a sphere can be used to com-

pute the pressure at every point outside the sphere through

the coefficients cnm. Note that the sound fields considered in

this paper are harmonic over time, such that p(k, r, h, u, t)
¼ p(k, r, h, u)e�ixt, where x is the angular frequency and t
represents time.16

III. SOUND FIELD SAMPLING

In this section, the theory of sampling and recon-

struction of the sound field is presented. The aim is to

compute coefficients cnm using samples from the sound

field, rather than the continuous function. This is the case

in practice when data are recorded by spherical micro-

phone arrays.

Consider a sound field in space, in which all sound sour-

ces are bounded by a sphere. The sound field can be repre-

sented as an infinite summation using Eq. (1). If the sound

field is assumed to be order-limited, and coefficients cnm in

Eq. (1) are zero for all n>N, then the sum can be truncated

as follows:

pðk; r; h;/Þ ¼
XN

n¼0

Xn

m¼�n

cnmðkÞhnðkrÞYm
n ðh;/Þ: (4)

The pressure at a set of Q positions in space is denoted by

the Q� 1 vector p,

p ¼ pðr1; h1;/1Þ; pðr2; h2;/2Þ;…; pðrQ; hQ;/QÞ
� �T

: (5)

We have omitted the dependence on k for notation simplic-

ity. Using Eq. (4), p can be represented by the following ma-

trix equation:

p ¼ Hc; (6)

where c is the coefficient vector of size (Nþ 1)2� 1,

c ¼ c00; c1ð�1Þ; c10; c11;…; cNN

� �T
; (7)

and H is a matrix of size Q� (Nþ 1)2, which includes the

Hankel function multiplying the spherical harmonics defined

by H¼ [h1, h2,…,hQ]T, where

hq ¼ ½h0ðkrqÞY0
0 ; h1ðkrqÞY�1

1 ; h1ðkrqÞY0
1

h1ðkrqÞY1
1 ; h2ðkrqÞY�2

2 ; :::; hNðkrqÞYN
N �

T ; (8)

We have omitted the dependence of the spherical harmonics

Ym
n on (hq, /q) for notation simplicity. Equation (6) can be

solved in a least-squares sense in order to find c,

c ¼ H†p; (9)

where H† is an (Nþ 1)2�Q matrix represented by the

Moore–Penrose pseudoinverse of H. We assume that

Q> (Nþ 1)2, so that oversampling of the sound field is

employed, and that matrix H is well-conditioned. If matrix

H is ill-conditioned, a large numerical error may occur, caus-

ing inaccurate values for c, as discussed in detail in Sec. VI.

Because the sound field is uniquely determined by Eq.

(4), calculating the coefficients vector using Eq. (9) enables

the calculation of the pressure function at every point in the

space outside of a sphere that contains all sources, under the

assumption that the field is order-limited.

IV. TRANSLATED SOUND PRESSURE

In this section, we present the spherical harmonics rep-

resentation under coordinate system translation. The theory

presented in this section is used later in this paper for the de-

velopment and analysis of the alignment methods. Consider

a fixed constellation of a source with unknown acoustic cen-

ter and a spherical observation of its sound radiation that sur-

rounds the source at a constant radius r¼ a. After a

coordinate system translation by r00, the above-presented

constellation is shifted to �r00, as illustrated schematically in

Fig. 1. In the new coordinate system, the spherical sound

pressure observation is no longer belonging to points of a

constant coordinate r0= a. Using Eq. (4), and omitting the

dependence on k, the sound field before the translation can

be written as

pðrÞ ¼
XN

n¼0

Xn

m¼�n

cnmhnðkrÞYm
n ðh;/Þ; (10)

where in this case r¼ (a, h, /).

FIG. 1. (Color online) Linear translation in a spherical coordinate system.
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We now investigate the effect of translation. The sound

field on the sphere surface before and after the translation

remains the same, but the coordinates of the points on the

sphere surface are changed due to the coordinate system

translation, as illustrated in Fig. 1. Equation (4) for the trans-

lated coordinate system now becomes

p0ðr0Þ ¼
XN

n¼0

Xn

m¼�n

c0nmhnðkr0ÞYm
n ðh

0;/0Þ; (11)

with r0 ¼ (r0, h0, /0). It is emphasized that the decomposition

of the sound field with respect to the shifted origin in terms

of c0nm is not necessarily order-limited, and truncation errors

may appear, as discussed in Sec. VI. Equations (10) and (11)

are equated and are written in a matrix form as

p ¼ H0c0 ¼ Hc: (12)

Multiplying from the left by H0† gives the relation between

the decomposed spherical harmonic coefficients in the origi-

nal coordinate system and at the translated ones,

c0 ¼ H0†Hc: (13)

That is, the relation between c in the original coordinate sys-

tem, and c0 in the translated coordinate system, is given by a

transformation matrix T as

T ¼ H0†H: (14)

V. ANALYTICAL REPRESENTATION OF
TRANSLATION

The numerical approach described in Sec. IV provides

an expression for the transformation matrix T relating the

spherical decomposition coefficients in the original and in

the translated coordinate systems. This section derives the

same transformation matrix analytically, based on the work

of Chew.24 The addition theorem for spherical coordinates

determines the following equation [Ref. 24, Eq. (D.14)]:

Ym
n ðh;/ÞhnðkrÞ

¼
X1
n0¼0

Xn

m0¼�n

Ym0

n0 ðh0;/0Þhn0 ðkr0Þbn0m0;nm; (15)

where b is defined as

bn0m0;nm ¼
X1
n00¼0

4piðn
0þn00�nÞYm�m0

n00 ðh00;/00Þ

� jn00 ðkr00Þð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n0 þ 1Þð2n00 þ 1Þ

4p

r

�
n n0 n00

0 0 0

� �
n n0 n00

�m m0 m�m0

� �
: (16)

Equation (16) has been presented for the case r0> r00, which

represents the case for which the translation is relatively

small compared to the radius of the measurement sphere.

Here,

j1 j2 j3

m1 m2 m3

� �

is the Wigner 3-j symbol.24 In order to represent the sum in

Eq. (15) in a matrix form, the sum is truncated at n¼N and

a matrix form of the equation can be derived,

H ¼ H0B; (17)

where matrix B of size (Nþ 1)2� (Nþ 1)2 is defined by

B ¼

b00;00 b1�1;00 b10;00 … bNN;00

b00;1�1 b1�1;1�1 b10;1�1 … bNN;1�1

..

. ..
. ..

. . .
. ..

.

b00;NN b1�1;NN b10;NN … bNN;NN

2
6664

3
7775 (18)

and H, H0 are defined in Sec. IV. Multiplying both sides of

Eq. (17) by H0† yields

H0†H ¼ B; (19)

which shows that the numerical transformation matrix T in

Eq. (14) is equal to the analytically defined transformation

matrix B, within some truncation errors. A further analysis

of translation is presented in Sec. VI.

VI. ERROR ANALYSIS

In this section, errors in the calculation of cnm due to

sampling and translation are analyzed. Three types of errors

are considered in the process of sound field translation. First,

as mentioned in Sec. IV, the matrix H and the coefficient

vector c are of infinite size. Therefore, a truncation error due

to sampling, under the assumption of order-limitation, is

unavoidable. Second, the infinite sum in Eq. (15) is trun-

cated, yielding a truncated transformation matrix T. Third,

ill-conditioning of H can cause numerical inaccuracies when

calculating c.

A. Sampling truncation error

The first type of error is due to a sampling error and is

unavoidable when sampling any function with order higher

than the sampling scheme allows. Notwithstanding, if the

function decomposition has low amplitudes for high orders,

the information loss can be neglected for a high enough

order N.
As shown by Rokhlin,25 if a source satisfies the follow-

ing expression, named as the radiation condition, for any

(h, /), c0> 0 and r !1:

pðr; h;/Þ ¼ c0 �
eikr

r
þ O

1

r2

� �
; (20)

then there exists c0> 0 such that for any point located at

r¼R outside a sphere of radius R1 surrounding the source,

and for N> kR,
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eS � pðk; r; h;/Þ �
XN

n¼0

hnðkrÞ
Xn

m¼�n

cnmðkÞYm
n ðh;/Þ

�����
�����

<c0

R1

R

� �N

: (21)

There are many physically meaningful pressure functions

that satisfy Eq. (20), such as a dislocated monopole or

dipole. The left-hand side of Eq. (21) is interpreted as the

error between the pressure function and the Hankel expan-

sion, which is bounded on the right-hand side of Eq. (21) by

a value that is inversely proportional to the distance from the

origin.

By applying the natural logarithm on both sides of Eq.

(21) it follows that in order to avoid numerical truncation

errors larger than eS, the sampling array order N must satisfy

N � max

�
kR;
� lnðeSÞ þ lnðc0Þ
lnðR1Þ � lnðRÞ

�
: (22)

However, due to the slow growth of the logarithm function,

for sufficiently small c0 and sufficiently large N it is reasona-

ble to take N� kR in order to avoid significant truncation

error.

B. Translation truncation error

The second type of error is due to source translation.

Equation (15) requires an infinite number of coefficients in

order to calculate the translated coefficients without error.

For the case of using only a finite number of coefficients a

translation truncation error must be considered. We define

the translation truncation error as the difference between the

pressure function on the measurement sphere, and the spheri-

cal harmonics composition of the translated source,

eT � pðkr0;W0Þ �
XN

n¼0

hnðkr0Þ
Xn

m¼�n

c0nmðkÞYm
n ðW0Þ

�����
�����

¼
X1

n¼Nþ1

hnðkr0Þ
Xn

m¼�n

c0nmðkÞYm
n ðW0Þ

�����
�����:

If a source is located at the center of a sphere of radius r, and

shifted to r00 from the center, then the maximal distance from

the measurement sphere surface to the origin is rþ r00. Using

Sec. VI A, the sampling scheme order must satisfy

N � kðr þ r00Þ: (23)

Hence, using Eq. (22) for a source with order Ns, the bound

on N becomes

N � Ns þ kr00: (24)

Based on the work of Coifman et al. on the fast multipole

method,26 another bound is given; a source of order N
increases its order due to a translation of r00 by

L ¼ kr00 þ a lnðkr00 þ pÞ; (25)

where a is a parameter dependent on the desired error eT. An

empirical experiment27 shows that a¼ 5 results in a relative

error within the range of approximately 10�6. Thus, the

translated coefficients should be calculated up to order LþN
in order to avoid additional truncation errors due to transla-

tion. Assuming the translation is small, the term

a ln(kr00 þp) can be neglected so that Eqs. (24) and (25) both

lead to the same bound.

For the analytic approach described in Sec. V, if the

above-presented condition is met the error due to translation

can be neglected. Furthermore, the infinite sum in Eq. (16)

does not pose a problem, because the Wigner 3-j symbol is

zero for j3> j1þ j2 and therefore the infinite summation

(from 0 to 1) reduces to a finite sum between

maxðjn� n0j; jm� m0jÞ and nþ n0 and can be computed

without truncation error.28

For the numerical method this is not the case. In order to

compute the transformation matrix T in Eq. (14) the pseu-

doinverse of H is required. Because both H and H0 are trun-

cated to a finite matrix, an error occurs even for a finite

number of coefficients c0nm. Consequently, the analytic

approach developed at Sec. V is expected to outperform the

numerical approach developed in Sec. IV.

C. Ill-conditioning error

The third type of error is due to ill-conditioning of ma-

trix H. In order to calculate the coefficients cnm, Eq. (9) uses

the pseudoinverse of H, so that when the matrix is ill-condi-

tioned the accuracy of the computation can be significantly

effected by small numerical or measurements inaccuracies.

Ill-conditioning may occur due to the large oscillations of

the Hankel functions,28 but this can be avoided by maintain-

ing the condition N <	 kr.
Ill-conditioning of H may therefore occur when the

sampling scheme order N is large in relation to kr. When the

analyzed frequency is low, this type of error can thus be

readily avoided by reducing the effective order of N.

VII. TRANSLATION OF A MONOPOLE SOURCE

Let us consider a simple point source located at the ori-

gin as a simple example of translation. The radiated pressure

is given by

pðk; r; h;/Þ ¼ A
eikr

r
; (26)

where A is the point source amplitude. Using the identity

eikr=r ¼ ikh0ðkrÞ given in Ref. 16, the spherical harmonics

decomposition for a point source will be

pðk; r; h;/Þ ¼ c00ðkÞh0ðkrÞ; (27)

with c00(k)¼ ikA. From this expression, the coefficient vec-

tor for a centralized point source is cnm¼ ikAd[n], where d½��
is the Kronecker’s d function. The translated coefficient vec-

tor can be computed using the results developed in Sec. V.

Multiplying the transformation matrix B with c of a point

source gives
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c0ðkÞ ¼ c00ðkÞ � b (28)

with b being the first column of the transformation matrix B.

Using Eq. (18), the translated coefficient c0nm is equal to

c0nmðkÞ ¼ c00ðkÞ
ffiffiffiffiffiffi
4p
p

jnðkr00ÞYm
n ðh00;/00Þ: (29)

This is the exact computation of the analytic expression for

c0nm. Due to the behavior of the spherical Bessel function,

c0nm is not limited. This illustrates that a linear translation of

an order-limited source may produce an unlimited-order rep-

resentation. However, for a given kr, the spherical Bessel

functions tend to zero as n!1, and can be truncated with-

out significant error, as discussed in Sec. VI.

VIII. MEASURES FOR SOURCE ALIGNMENT

In order to align an acoustic source according to its acoustic

center, a definition of the acoustic center is required. Both the

American National Standards Institute (Ref. 29) and Interna-

tional Electrotechnical Commission (Ref. 30) define the acous-

tic center in a similar way as the point from which the spherical

waves appear to diverge. Rafaely22 has developed several meas-

ures for source alignment that will be presented herein.

When a point source is positioned at the origin, the

higher order harmonics are all zero, and thus it is reasonable

to look for a source alignment measure that will minimize

the energy of the high-order coefficients of cnm. This kind of

representation will require the lowest number of coefficients

and consequently avoid major truncation errors. Further-

more, this approach leads to an efficient representation, i.e.,

using the least number of coefficients to represent the source,

and thus simplifies spatial audio encoding.

A. The four measures

Based on Ref. 22, four measures for spectral content of

the high-order harmonics are presented in this section and

are later used as optimization criteria for the performance of

source alignment.

(1) J0—power of the zero-order harmonic,

J0 ¼ 1� jc00j2=L2; (30)

where L2 is the squared 2-norm of the pressure vector,

L2 ¼ ck k2
2¼
XN

n¼0

Xn

m¼�n

jcnmj2: (31)

(2) J1—power ratio, extending J0 to include the first �N
harmonics,

J1 ¼ 1� r2
�N=L2; (32)

where

r2
�N ¼

X�N

n¼0

Xn

m¼�n

jcnmj2 (33)

for �N < N.

(3) J2—center of power,

J2 ¼
XN

n¼0

Xn

m¼�n

njcnmj2=L2 (34)

(4) J3—center of magnitude.

This measure and J2 are both inspired by the concept

of the center of mass. J3 is presented and described here

for the first time. It is a linear weighting of the absolute

value of the coefficients and is defined as

J3 ¼
XN

n¼0

Xn

m¼�n

njcnmj=L1; (35)

where L1 is the 1-norm of the coefficients vector,

L1 ¼ ck k1¼
XN

n¼0

Xn

m¼�n

jcnmj: (36)

J3 is the first moment of the magnitude of the coeffi-

cients. This measure will increase significantly when the

moment of cnm is of high order, and conversely, will

decrease when it is of low order. Analogous to rigid

bodies, when the center of mass is not at the center of

the coordinate system, the body is misaligned. On the

same note, when the mean harmonic is of high order, the

source is misaligned.

B. Measure analysis in a point-source sound field

The value of the four measures for a point source, located at

the origin and then translated by a varying distance from 0 to

0.75 of a wavelength, is presented in Fig. 2. Figure 2 shows

that J0 indeed increases with the translation distance, but the

variation is not monotonic, and so an optimization approach

to find the translation based on J0 may converge to a local

FIG. 2. The values of the four measures J0, J1, J2, and J3 as defined in Eqs.

(30), (32), (34), and (35), respectively, as a function of the translation of a

point source.
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minimum. Measure J1 with �N ¼ 2 is monotonic, as is J2, but

J2 is steeper, making potential convergence faster and more

robust using J2 compared to J1. J3 achieves the steepest

slope, but is not smooth around zero, which may pose a con-

vergence problem for minimization algorithms.

C. The alignment algorithm

The above-presented measures now form the basis for

an alignment algorithm. First, a minimization problem is

defined as follows:

x̂i ¼ arg min
xi

Ji; i ¼ 0; :::; 3; (37)

where x̂i is the alignment value that minimizes the corre-

sponding measure Ji. Next, an optimization solver is applied

to compute x̂i in practice. In this paper, the optimization

problem is formulated using MATLAB version R2010a, and

solved using the built-in function fminsearch, which imple-

ments the optimization method of the simplex search

method.31

IX. SIMULATION STUDY

Several simulation examples are presented in this sec-

tion in order to study the performance of the alignment algo-

rithm. The examples relate to the following sources: (a) a

shifted monopole, (b) a monopole and a dipole creating a

directional source, and (c) a high-order source. The proper-

ties and limitation of the proposed methods will be studied

and illustrated through these three examples.

A. Monopole

A monopole source located at (x, y, z)¼ (k/10, 0, 0)

from the origin is surrounded by a spherical microphone

array of radius r¼ 1 m and order N¼ 4, having 100 micro-

phones with an equiangle sampling scheme. For a more

detailed description of the spherical microphone array sam-

pling scheme, the reader is referred to Ref. 11. A radiation

frequency of f¼ 125 Hz is chosen for this example so that

kr¼ 2.29, in order to illustrate the performance of the align-

ment algorithm with the different measures, in the case of a

low-order source.

The sound pressure is measured at radius r¼ 1 m of the

origin. The magnitude is plotted in Fig. 3(a), which shows

that the sound field for a misaligned monopole is not equal

around the sphere. As discussed earlier in Sec. VII, its coeffi-

cients cnm are not order-limited, although they do tend to

zero as n tends to infinity. This is demonstrated in Fig. 3(c),

showing coefficients cnm for n
 4. The measured pressure at

the sphere surface was used as the input to the alignment

algorithm. Figure 3(b) shows that after alignment using mea-

sure J2 the sound field is very uniform. Figure 3(c) verifies

this showing that cnm � 0 for every n greater than zero. This

indicates that the sound pressure has the same phase and am-

plitude around the sphere. This result is expected for a

monopole located at the origin. Alignment results with the

other three measures were similar, with all four measures

aligning the source to the origin of the coordinate system, as

presented in Table I.

B. Directional source

The second simulation example employs a directional

source, consisting of a weak monopole with a strong dipole

component. The source is located Dx¼ k/10 m away from

the origin along the x axis. This simulation example there-

fore investigates the performance of the alignment algorithm

for highly directional sources.

The setup simulation parameters are the same as in the

monopole case, with the pressure at the measurement sphere

given by Eq. (4) with c00¼ 1, c10¼ 5, and cnm¼ 0 for all

other n, m. Alignment results using measure J2 are presented

in Table II, and Fig. 4. Although the alignment algorithm

converged, the alignment position seems to be shifted away

from the physical center of the source. Figure 4 shows that

FIG. 3. (Color online) The magnitude of the pressure jpðkr; h;/Þj as a func-

tion of the angle h, for f¼ 125 Hz and /¼ 0 due to a monopole source. (a)

At the original position (x, y, z)¼ (k/10, 0, 0), (b) at the aligned position

using the alignment algorithm and J2, and (c) the coefficients jcnmj of the

pressure before and after the alignment.

TABLE I. Results of monopole alignment with the four measures.

x y z Total error

Source location 0.2744 0 0 0

arg min J0 0.27439 2.7266� 10�5 3.6623� 10�5 4.7248� 10�5

arg min J1 0.27189 1.322� 10�5 � 1.8651� 10�5 0.0025057

arg min J2 0.27439 2.7266� 10�5 3.6623� 10�5 4.7248� 10�5

arg min J3 0.27438 4.1603� 10�5 �0.03443 0.03443
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the zero-order harmonic has stronger energy compared to all

other harmonics, even though most of the original source’s

energy is in the first harmonic. The alignment value using J2,

which aims to maximize the low-order harmonics and in par-

ticular c00, did not match the physical center of the source.

For the same reason, alignment values using J0 and J3, were

different from the physical center. Figures 4(a) and 4(b)

show the pressure magnitude as a function of angle h, before

and after alignment, respectively. The dipole-like directivity

in Fig. 4(a) is significantly modified in Fig. 4(b), illustrating

the effect on sound directivity of alignment to a position

away from the physical center.

It is interesting to note that when measure J1 is used in

the alignment algorithm, and the true source order is known,

such that �N can be set to one, the position of the aligned

source matches the physical position, as can be seen in Table

II. This is as expected because in this case the coefficients of

orders higher than one, which appear due to the misalign-

ment, are minimized, therefore producing perfect alignment.

This suggests that for non-monopole type sources, J1 may be

preferred if the effective order of the source is known a pri-
ori. This approach could extend the definition of the acoustic

center to sources that have a purely dipolar radiation pat-

tern,18 and is proposed for further study.

C. High-order source

The effect of sampling and truncation errors discussed

in Sec. VI on the performance of the alignment algorithm is

now illustrated. Sampling errors occur when the array sam-

pling order is lower than the source order, and aliasing is

expected. In the next simulation, a source with order N¼ 6,

with high energy at orders 0 and 6 is considered when dis-

placed by Dx¼ k/10 m from the origin. The sound field is

sampled using two sampling configurations; first based on an

array of order N¼ 7, which is sufficient for sampling the

sound field due to a translated source without sampling

errors for limited translation values and second based on an

array of order N¼ 4, where significant aliasing and trunca-

tion errors are expected.

The alignment results are presented in Fig. 5. For the

case of the array of order N¼ 7, the alignment algorithm

using measure J2 converged along a convex error surface,

with a minimum at the correct position, as can be seen in

Fig. 5(b). The corresponding radiation pattern after align-

ment is the same as the source radiation pattern. However,

for the case of array order N¼ 4, the coefficients cnm are mis-

calculated due to aliasing and translation errors. Therefore,

the radiation pattern presented in Fig. 5(c) does not represent

the true source radiation pattern and the alignment algorithm

using measure J2 did not converge to the correct alignment

value. Furthermore, the error surface is not a convex

TABLE II. Results of directional source alignment with the four measures.

x y z Total error

Source location 0.2744 0 0 0

arg min J0 0.27438 �2.3083� 10�5 0.81862 0.81862

arg min J1 0.27442 4.1921� 10�5 1.793� 10�5 5.1991� 10�5

arg min J2 0.27439 2.6533� 10�5 0.65286 0.65286

arg min J3 0.27442 5.7007� 10�6 0.085407 0.085407

FIG. 4. (Color online) The magnitude of the pressure jpðkr; h;/Þj as a func-

tion of the angle h, for f¼ 125 (Hz) and /¼ 0, due to a directional source.

(a) At the original position (x, y, z)¼ (k/10, 0, 0), (b) at the aligned position

using the alignment algorithm and J2, and (c) the coefficients jcnmj of the

pressure before and after the alignment.

FIG. 5. The measure J2 due to translation of a source of order N¼ 6 for an

array of order N¼ 4 (a) and for an array of order N¼ 7 (b). The magnitude

of the pressure jpðkr; h;/Þj and a function of the angle h, for f¼ 125 (Hz)

and u¼ 0 for an array of order N¼ 4 (c) and for an array of order N¼ 7 (d).
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function, without a clearly defined minimum within the

search range, as can be seen in Fig. 5(a).

X. EXPERIMENTAL STUDY

In order to investigate the proposed methods with real

data, recordings of musical instruments were performed with

a large surrounding spherical microphone array in a source

alignment study. The recordings took place in a full anechoic

chamber, as part of a joint project between the Technical

University of Berlin and RWTH Aachen University, with the

aim of analyzing the natural sound radiation of musical

instruments. The instruments were placed inside the micro-

phone array and played chromatic scales, without vibrato or

tremolo, during the recording sessions. These recordings are

used in the following to investigate the performance of the

alignment algorithm with the different measures.

A. Setup

The geometry of the employed microphone array is a

truncated icosahedron, with calibrated microphones at the

directions of the center points of its 32 faces at a radius of

4.2 m, as described in detail in Ref. 9 and depicted in Fig. 6.

The influence of the microphone housings was analyzed

with the help of a boundary element method simulation and

corrected accordingly.32 The musicians were positioned fac-

ing the positive x axis and having the assumed center of the

sound source aligned as accurately as possible with the geo-

metric center of the array. The accuracy of this alignment

was limited due to practical constraints. The position of the

musician and the musical instruments was documented by

two perspective photos, one from the side and one from the

front, as can be seen in Fig. 7.

The order of the spherical microphone array used in this

experiment is N¼ 4, enabling the sampling of an order-lim-

ited source with a maximum frequency of 1.1 kHz in order

to avoid significant aliasing error. In addition, in order

to avoid significant truncation errors when considering

translation for a source of orders N¼ {1, 2, 3}, a maximal

translation of {0.67, 0.55, 0.44} m, respectively, is allowed

at frequencies lower than 400 Hz.

A trumpet was selected as the sound source to investi-

gate the alignment algorithm. The trumpet can be considered

as an omnidirectional source at frequencies below 500 Hz,

and as a directional source at higher frequencies.6,33–35

Therefore, the directivity at different frequencies within the

operating range of the array may have a different spherical

harmonics representation, which may affect the alignment

algorithm performance at different frequencies even within

the same measurement. Moreover, even though the musician

was asked to avoid movement as much as possible, some

variance is expected between the different measurements

and even during each measurement.

A full scale of the trumpet was recorded at a sampling

rate of 44.1 kHz, from the lowest note of F#3 to the highest

note of F6, each played for approximately 2 s. The alignment

process includes the application of the fast Fourier transform

of a size of approximately 88 000 samples for each note. The

main harmonics and the alignment of the source are identi-

fied using data from each single harmonic using measure J2,

which is the preferred measure for omnidirectional sources,

as mentioned previously.

As the goal of this study is the evaluation of the per-

formance of source alignment, the algorithm was applied

independently for each harmonic of each played tone. This

strategy ensured that the alignment was performed on a sin-

gle recording each time so that possible errors between

several recordings due to movements were minimized. In

addition, this facilitated the investigation of the algorithm in-

dependently for each frequency.

B. Results

The directivity pattern of the trumpet for several notes,

before and after the application of the alignment algorithm,

is shown in Fig. 8. One can see that the radiation patterns af-

ter translation have smaller ripples, which indicates higher

energy at the low harmonic orders. The average reduction in

J2 for all examined notes was about 64%; this supports the

results presented in Fig. 8 showing patterns that are assumed

to have more significant low-order coefficients.
FIG. 6. Geometry of the spherical microphone array used for the directivity

recordings (diameter of the array 	4.2 m).

FIG. 7. (Color online) Positioning of the trumpet player inside the

microphone array. The approximated geometric center of the spherical

microphone array is marked with a white cross.
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FIG. 8. Sound directivity of a trumpet in the horizontal plane before and after translation for several notes.

FIG. 9. An illustration of the axes relative to the musician.
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The algorithm’s alignment results are shown in Figs. 9

and in Fig. 10 with each harmonic analyzed separately. The

coordinate system is chosen such that the musician is facing

the positive x axis, whereas the z axis is pointing upward, as

illustrated in Fig. 9. One can see that for low frequencies the

results of the algorithm are consistent, showing alignment

values around 0.4 m for the xy and xz planes, with a variance

of 4.7 mm. For higher frequencies, the variance is 64 mm.

This can be explained by the higher order of the source di-

rectivity, causing truncation and aliasing errors.

The measure function of criteria J2 is plotted in Fig. 12

for the note F#4, at a frequency of 370 Hz (fundamental) and

1 100 Hz (second harmonic). For low frequencies the func-

tion is convex, thus facilitating correct convergence of the

alignment algorithm, while for high frequencies the function

is a surface with several local minima. Convergence to the

global minimum cannot be guaranteed in this case.

C. Discussion

When source alignment is performed using measured

data the real acoustic center, as a reference value, can

approximately be estimated from the perspective photos

of the musicians. Therefore, the alignment may be consid-

ered successful when the origin, after alignment, is close

to the estimated real acoustic center, which is expected

when the low harmonics of the measured radiation are

more significant. In addition, it is expected that most of

the recordings are aligned to the same position, assuming

that the musician did not move dramatically during the

recording session. For low frequencies, the alignment pro-

cess exhibits consistent results, and thus achieves compen-

sation of the radiation pattern due to shifting in the source

location. In addition, after alignment most of the energy

of the source is within the lower orders, and thus the

spherical harmonics representation allows a more efficient

coding of the radiation pattern. Furthermore, the aligned

patterns may be more accurately reproduced when using a

spherical sound source as a playback system, since the

limited number of loudspeakers only allows controlled

reproduction up to a certain order.36,37 Alignment of sour-

ces can thus be useful for spatial coding and auralization

purposes.

The setup for the experiment is limited to low frequen-

cies, and achieves good results in the range of up to 400 Hz.

It is emphasized that since musical instruments generally

cannot produce sound without the musician, we consider the

sound source as the instrument together with the musician.

Hence, influences such as diffraction off the musician are

considered as part of the radiation pattern of the instrument.

For higher frequencies there are many factors indicating that

the results are not valid; the algorithm converges to distant

points for different notes and even for different harmonics of

the same note. The error function has more than one mini-

mum, and in some cases the results are too far from the

sphere’s center to be acceptable. The poor results at higher

FIG. 10. (Color online) Acoustic centers of trumpet for different notes in XY, XZ, and YZ look directions, computed using the alignment algorithm and J2.

Circlesup to 400Hz, Xs—above 400 Hz.

FIG. 11. The radius (upper graph) and angle (lower graph) of the acoustic center

of a trumpet for different frequencies. For low frequencies the results are of small

variance, and for higher frequencies the results are variable and not consistent.
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frequencies can be explained by a few factors. First, as men-

tioned, the trumpet, as well as many other physical sources,

acts as a monopole for lower frequencies. As shown in the

simulation study the algorithm performs well for monopole

sources, while at higher frequencies the radiation pattern is

more directional. Second, the error analysis suggests that the

error bounds depend on frequency, and are less confined for

higher wave numbers, due to higher kr.

XI. CONCLUSIONS

This paper develops and presents a numerical and an ana-

lytical formulation of the spherical harmonics representation

of the radiation pattern of a sound source as a function of the

translation of the source in the coordinate system. Measures

are proposed to reflect the effect of translation on the coeffi-

cients of the sound pressure in the spherical harmonics do-

main. In addition, an extensive error analysis is presented.

The proposed algorithm for source alignment has been studied

using simulations and experiments. The theory presented here

and the measures proposed can be employed for the spatial

alignment of acoustic sources in measurements of radiated

sound pressure using spherical microphone arrays. Improved

measures for directional sources and spatial encoding methods

which use this method are proposed for future work.
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